Prolongement du débat en CS des IREM le 5 décembre 2014

Enseignement de la loi de Gauss

Michel Fréchet (1), 25 avril 2015

Merci pour ce texte de Daniel Perrin auquel je souscris totalement : (http://publications-sfds.math.cnrs.fr/index.php/StatEns/issue/current)

Le document ci-dessous donne, à mon avis, un exemple de "crime contre l'esprit" géométrique.

L'autonomie d'un batterie peut-elle être négative?

Bac ES, Pondichéry, 16 avril 2015

L'autonomie de la batterie qui équipe les ordinateurs portables distribués par la société MICRO, exprimée en heures, suit un loi normale d'espérance p=8 et d'écart-type $\sigma=2$.

Cet énoncé affirme, sans aucune précaution, que l'autonomie d'une batterie, que je note X, suit une loi normale.

En utilisant ce qui est permis par le programme de T ES, calculons la probabilité que cette autonomie soit négative :

$$P(X \le 0) = 0, 5 - P(0 \le X \le 8) = 0.5 - p(-4 \le \frac{X - 8}{2} \le 0) = 0, 5 - \frac{1}{\sqrt{2\pi}} \int_{-4}^{0} e^{-\frac{x^2}{2}} dx$$

Un calcul avec GeoGebra donne : $p(X \le 0) = 0,00002167$

Peut-on dire que cette probabilité est presque nulle, donc négligeable!?

En tant que matheux, je ne peux me résoudre à accepter cela : si la probabilité est non nulle, on peut donc avoir une batterie avec autonomie négative!

Cette probabilité est d'ailleurs plus de 200 fois supérieure à la probabilité de gagner au loto (grille de cinq nombres sur 49) :

$$p(gagnantloto) = \frac{1}{\binom{5}{49}} = \frac{1}{7627534} = 0,000001311$$

Dit-on aux personnes qui jouent au loto que leur chance de gagner est nulle?

N'y a-t-il jamais de gagnants au loto?