A GRAPHIC MILIEU TO TEACH THE CONCEPT OF FUNCTION:
WHICH FORMSOF KNOWLEDGE MAKE STUDENTSABLE TO CONJECTURE

AND PROVE?

| sabelle BLOCH

IUFM d’Aquitaine (Institut Universitaire de Formati des Maitres) et DAEST (Laboratoire de
Didactique et Anthropologie des Enseignements $figures et Techniques, Université
Bordeaux 2) France

Abstract: In many countries, the first concepts of calculssch as functions) are taught by giving
examples, noticing their properties and generaliZiom them in some implicit ways. Students have no
means to discuss the general truth of the statemento examine the validity of a theorem, depegdif

the mathematical field. This knowledge is nonetb®l¢he one which is demanded by teachers at
University level.

Are there activities which can be organized witlhdsnts at the beginning of the calculus, and whiith
nevertheless lead them to work about statementsvaliity of theorems ? | present a teaching device
concerning the concept of function, which leadslstuis to work in a graphic milieu in order to produ
mathematical statements and theorems, then dishass and test their validity. It intends to use the
procedural aspect of the graphs and moreover,oitigees an appropriate milieu to link intuitive and
formal knowledge (the one which is required at thaversity to establish proofs). | will point thafter

an experiment, students become able to cope witlttins as objects and with the nature of
mathematical statements.

Keywords: functions, necessity of mathematical knowledg®ofyrsituations, graphic milieu,
settings and representatives.

Educational Studies in Mathemati&2-1, 3-28, 2003



INTRODUCTION

In many countries, the first concepts of calcultes taught apart from problems and without all
the tools of formalization. Indeed the usual intraiibn at upper secondary school consists in
giving a few examples of functions and limits, ootg their properties in order to eventually
reach generalization in some implicit ways. Thisugpposed to be sufficient to give students a
first approach of the concepts of analysis, assgrfiat, later, they will learn (at university leyel
to prove and justify the properties introduced h&uw at the University, teachers often complain
that students do not show the proper abilitiesrtwg and that they use graphs and equations as if
they were kinds of "labels" of a function, insteafdmaterial mediums to express concepts and
tools for proving.

In this paper, | question the knowledge built bydents in the common approach at upper
secondary school. | will distinguish the knowledgeich is useful to simply notice a property,
from the one necessary to understand and even ggadproof. | will also consider the ability of
transferring the first type of knowledge to thew®t one, without a radical break, and examine
the nature of this break when it occurs: it consdhe nature of mathematics and mathematical
statements, in the sense that mathematical statense necessary(the statements of a
mathematical theory are linked to each other amoh fa coherent whole), and that a theorem
allows to say if a peculiar object does or doesveofy a property.

My main question could be stated as follows: whygietof knowledge is necessary to make
students able to produce and/or prove mathematiatgments about functions and to test their
validity ? And what are the situations that coddd to that knowledge?

Related to this last question, this paper alsordess and analyses a teaching device in which
students 17-18-year old are led to produce funstiora graphic milieu, and moreover to produce
mathematical statements on these functions, disgu#ise validity of properties, and the field of
their applications.

This paper is divided into three parts:

- first, 1 question the usual approach in teachthg concept of function and set out the
mathematical knowledge that is lacking in this aigation;

- in the second part | analyse the settirigswhich mathematics can work about functions, and
the representatives these settings allow to usg,| ahow how situations can be introduced to
lead to the target knowledge;

- in the third part, | present a situation withaage panel of tasks for students, and explain how
these tasks "compel” them to work about the prageedf functions and mathematical statements
in an appropriate milieu

- as a conclusion | will take some students’ waksd see what kind of reasoning they were able
to produce in this milieu.



I. THE USUAL ORGANISATION AND ITS EFFECTS

In the seventies, calculus used to be taught Viitthe rules of formalization and proofs, like the
epsilon-delta definition for limits. Since it is nmore the case (in France as in many countries)
teachers have to try and make students perceivabibets, and the properties of these objects, by
other ways.

A standard progression found in the curricula aexthiooks is, for instance, the following:
students are given the graph of a function, ance itavset out the properties of the related
function, as seen on that graph. The teacher dasttielents that this function is bounded, and
how it can be seen on the graph. The studentshare itvited to find the boundaries of the
function and to write something that makes the @vig of the property appear, in terms of an
inequality.

Several works show that many students who werehtaihgs way, are not able to apprehend the
right nature of mathematical objects (like functar limits) and to produce proofs in a calculus
problem: see for example Schwarz and Dreyfus (199%vit (1997), Dreyfus (1999).

As T. Dreyfus says,

“Giving an argument or explanation is a very difficundertaking for beginning undergraduates
from at least two points of view: in most casegythtill lack the conceptual clarity to actively
use the relevant concepts in a mathematical argiyraed, more generally, they have had little
opportunity to learn what are the characteristica mathematical explanation”. (Dreyfus 1999,
p. 91)

The following example is a good illustration of tkead of work usually given to students at
upper secondary school, and which does not giva @iy opportunity to learn something about
explanations and mathematical proofs:

Schema 0 : bounded function vA
Students are given a graph, with the following
instructions:

- either, “this is the graph of a function, hatbe

a lower bound — on the y axis — this is a bounded \ /

below function” (status of a definition)

a b x
- or, (a scale being given) “show that the Y X
function is bounded below” (status of a proof?)

At this time in France teaching is organised asilesd above:

- first, the teacher does a standard tasks in ldssiwom with his/her students, using different
symbols of the target concept, here functions;

- then, students are supposed to do the samepthigh emblematic symbols of the same concept;
- students are supposed to see in the used syrfgrajshs, tables of numbers, formulae ...) the
same meanings as the teacher does, that is, foscimal their properties.

This presentation is supposed to be more “intditthan a formal one; but in fact, it does not

make the fundamental mathematical knowledge appeang this work, students indeed cannot
learn or imagine:



- which are the functions (or categories of funesipthat are bounded;

- what the use of this property in the mathematarglanisation is: why is it useful to study
functions?

- How it is possible to distinguish this propertgrh the others connected with order: extremes,
growth...

- Which are the functions (or categories of funsipthat arenot bounded;

- What the contrary of being bounded is: the progpgs” being well known, how can we enounce
the property “non p"?

... And no further work will ever be done about thgsestions.

In other words, this ostensive way of teaching does lead to real work on mathematical
statements: it is a specificity of mathematicatesteents that they allow to know what properties
they determine, what mathematical objects verigsehproperties and what are those tlmahot
verify the properties. But to do that we need tdolwalid a property, otherwise we cannot do
anything with it. And if we know a property we calso know its contrary, which is not possible
in the present organisation. Students are thenggiom a representative to another without
knowing the use of it.

As Schwarz and Dreyfus sayn mathematics “learning is reduced to mappintyben several
notation systems signifying the same abstract ¢bjaad in the same paper the authors point the
fact that research studies about learning functimngd graphs show persistent difficulties in
linking those different notation systems:

- Students do not succeed in tasks linking inforomafrom different settings (from a formula to a
graph, even from one graph to another graph...)estisd knowledge is compartmentalized,;

- Students have great difficulties to constructphs tables, or formulae by themselves, so
teachers usually make them work on given notatieystems and avoid tasks of construction.
The authors insist on the ambiguity of all représtwes of a function, and on the fact that
teaching often does not deal with this ambiguigyher often, algebraic ambiguities are dealt with
because it is the nature of algebraic work to liddwo formulae represent the same function, but
the treatment of ambiguities about graphs or tatdgeends of other external factors as curricular
goals or grade level or even the particular problienshort it is treated in the didactical contract
For instance, depending of the context it is cagr®id obvious that a table (two numbers and
images) is a representative of a linear functiorthat a curve like the one above (schema 0) is
the graph of a quadratic function.

Schwarz & Dreyfus conclude that “ambiguity probleans avoided in standard curricula because
students do not have the tools to cope with théBcthwarz & Dreyfus 1995, p. 263)

At the same time Duval (1993, 1996) studies thdiglay and ambiguity of representatives
(every representative is partial to what it repnéseand partiality leads to ambiguity) and
concludes that we must consider the interactionongmdifferent representations of a
mathematical object as being absolutely necessappnstruct the concept. We follow Duval
about this necessity, but as he says that mathesnatrk with and on “representations” of their
concepts, we think that it is important to distirgliLrepresentationsthe way people imagine the
concept, fromrepresentativesthe way symbols are used to make the concepteappSo
according also to Schwarz & Dreyfus, we will callpresentativeof a function a table of
numbers, or a formula, a symiyél, a graph...



But if “mapping between several notation systengnififing the same abstract object” is
necessary, students’ difficulties will not makeeisy to organize the work through various
representatives of functions, in order to link thiferent settings. Two representatives of the
same function being given, how can we be sureftimagtudents they signify the same object, or
even that for them they signigomething To try to answer this question, | will first empt the
possibilities of representation that the differesettings offer, and retain some tasks to link
representatives of functions: some of these taskgaely given in the usual organisation of
teaching, although they are interesting to ensuae far as possible — that students work on “the
same abstract object”.

The second question is to organize situations pleamit to validate, that is, to work on real
mathematical knowledge and mathematical statemeftsl speaking of functions, the
mathematical knowledge is relative to g@pertiesof functions, and not only to what we can
“see” about functions with some representatives.

Our device thus proceeds from the same analydis &avit's, who said he wanted to develop a
property-oriented viewf functions:

“... a property-oriented view is established throwgb types of experiences. First, the property-
oriented view involves an ability to realize theur@lence of procedures that are performed in
different notational systems. Noting that the psses of symbolically solvinf(x) = 0 and
graphically findingx-intercepts are equivalent (in the sense of findiagbes) demonstrates this
awareness. Second, students develop the abilggreralize procedures across different classes
and types of functions. Here, students can reledegolures across notational systems, but they
are also beginning to realize that some of thesequures have analogues in other types of
functions. For example, one can find zeroes of tiotar and quadratic polynomials (as well as
many other types of functions), and this invariarsceshat makes the property apparent.” (Slavit
1997, p. 266-267).

In this extract it is also apparent that studemsdnto do lots of comparisons between different
functions in different notational systems to realthe invariance of properties; but not any task
will help to reach this aim. This means that if theice of pertinent representatives, and different
classes of functions, are necessary to reach aurigis not sufficient: the situation in which
students are immersed is essential to produceatigettknowledge. By situation we mean the
type of problems students are led to solve: withs¢éhproblems we try to obtain a work on
mathematical statements and an activity of reagpmm the classroom. The situation we
implemented in a class is described in lIl.

II. REPRESENTATIVES, SETTINGS AND POSSIBLE TASKS

II.1 Settings and representatives

In the standard progression, graphs are used ledhayg are seen as an easy wayshow
functions, that is, as “good” representatives afctions: good for teaching of course, to present
the concept of function with a real time (and ckdtion) saving process. It is supposed that
students can see functions and their propertiesititr graphs. Yet, we have noticed that the usual
treatment of graphs does not seem appropriatee@tinchased aims. But what are the other
possibilities, in the same setting or in differenes? And how can each representative open the
way to the concept? What is it possible to dor& liarious representatives in different settings?



The settings at our disposal when working abouttions are the following:
- numerical: tables of values;
- algebraic: formulae, equations;
- geometric: variable geometric magnitudes;
- graphic: straight lines, curves, axis;
- formal: notationd, f %, fog, f(x),...
- analytic: with notations a® , or related to orders of magnitude; it is usedhieuristic but not
for any validation at upper secondary school.
These settings have not the same properties fonemettical work about functions; one or
another representative in some setting does nmt/dhe same validation for the same problems
and does not show the same properties of the fumdtiis important, first to know the properties
of each setting, in terms of how they are partiahe objects they represent; and then to make an
inventory of the tasks they allow to organize fardents. Teaching depends also on the former
knowledge built by students in each setting.

» In the graphic setting
One can see only what is in the window, one caseet‘as far as” the infinite limits; the graph is
discrete (and so are graphs on a graphic calculaddiso one cannot “see” the continuity, it must
be supposed. But the curve can be seen as an,olfech is interesting so as to see properties;
on the other hand one also can &ase properties, e.g. if a function has got the limera at
infinite, its derivative has got the same limitaer Therefore, this setting cannot be uséshe
to validate and prove, this is why we must intragldools of another setting tmperate on
functions. Otherwise, students do not possess iapioiormer knowledge about graphs.

» In the algebraic setting
One can see what type of function one has got,palynomial, and then deduce well-known
properties; one can transform the formula; but cen@not see the curve, neither values or roots.
This setting can be used to prove, but it soon inesovery difficult if functions are more than
linear or quadratic polynomial ones. Moreover wewrthat students at the present time do not
do very well in algebra, so algebra is a settingenehthey have only got little knowledge; and
teachers encounter great difficulties when theydriet them work on formulae to prove growth,
or limits and derivatives. So the algebraic settgrgseful to help students to prove, but it is not
so good for intuition, and it reveals its limitssmon as functions get rather complicated.

» In the geometric setting
The geometric setting is not much used at the ptdsae: problems of variation of a geometric
magnitude are no longer the object of an importaotk, as they could have been in the 50-
60ties. So students are not used to working onkilhd of problems, and cannot be credited of
the linked knowledge. It would be very expensivetarms of teaching strategy, to reintroduce
this setting in the classroom work.

» In the numerical setting
This setting inherits a lot of students’ knowledet it is very partial to the represented objects,
and therefore it carries lots of ambiguities: onuanerical table you can see only a few values,
and you could infer that the function is linear,h@s got an extreme, even if this is not true.
Besides, this setting is not convenient to provesabse it is discrete whereas all functions are
continue at this level; and the continuity cannetitiduced on a numerical table as on a graph.
Anyway this setting is useful to help to draw grgpthat is the way it is used in the usual



organisation: at best as an abacus, which is d \e@a of functions (point by point) and not a
global one (the mathematical object "function”).

» In the formal setting
Students hardly know the formal setting, and ihis best one for validation, the one which will
get the greater place at University. One could im&aghat one of the objectives at the entry into
calculus is to try and familiarize students witle tvork in this setting. But this formal setting
cannot be sufficient to give meaning to the congepd it must be coupled with another setting
where students can be confronted with formulaeaphs.
We can notice that the graphic setting and the &wone seem interesting, but the algebraic one
could be of some help; and anyway, after havinggeized the useful settings, we must now
make an inventory of the possible tasks, and chdbseones which obey to at least two
conditions:
- first, being adequate to make students consfunzdtions and work on their properties, as to
ensure that students work on mathematical knowlemlgdar as possible; and this involves
possibilities of operating on functions;
- secondly, being rather easy to introduce in #asstoom work: this ergonomic condition is
essential to give such a device a chance of bahigweed.

[1.2 A choice of tasks

We will not repeat the well-known tasks such aglgtthe variations of a function when it is
given as a formula, calculate a few values, and/din@ graph. One can see that there are lots of
interesting tasks that are not the object of a vatrigpper secondary school. Only in the graphic
setting can we mention:

- find images and antecedents to validate proertie

- enlarge the window or make a zoom;

- change the axis and discriminate between whateiserved and what is not;

- change the scale, see that the concavity doeshaoge .2

But this is the conversion between settings thaviges us with lots of non usual tasks, for
instance:

- find information about the properties of a (cla§sfunctions on a graph;

- find the algebraic formula of a function knowitige graph, values, and the type of the function
(linear, or polynomial, or square root...);

- construct graphs under conditions (bounded fongtjiven roots ...)

- see how a graph or an equation can be the caeaihposite function;

- compose graphs to find the graph of the compdsitetion;

- find the graph of the inverse function;

- operate on functions through their graphs (makestructure of algebra of functions appear);

- write operations on functions, inverse, compogitections, with formal symbols and prove the
graphic conjectures ...

We notice that the graphic setting provides us Wits of interesting tasks, but as we said, it
cannot be used alone to prove: it is useful toexdnje, and coupled with a convenient formal
tool (see lll) it allows a large choice of functaproblems.

The question now is, how to organize such a workigth school level, or at the beginning of
University, when students do not have theoretioadins of proof at their disposal? And how can



we link a given work about graphs or equations, amathematical knowledge, as D. Slavit
recommends it?

| have used the Theory of situations, due to GuyuBseau (Brousseau 1997), to build a teaching
device for 17-year-old science students within apgic milieu; this milieu is proper to make
students draw graphs of functions and study thetifoms’ properties, to produce and question
statements about functions. In order to achieve #iin, | have borrowed the graphic milieu
proposed by Pedro Alson (Alson 1989), and | orgaahithis milieu by didactical variables that |
could identify and handle in order to produce qoest of analysis. | could then observe the
knowledge that was expressed by students while Wese working, and try to link their
knowledge to theoretical knowledge. The main hypsihthat led to conceive this device, is that
semiotic tools largely determine the kind of mathénal work that can be done. This hypothesis
asserts that mathematical knowledge is strongketinwith semiosis, and even more, semiotic
tools both contain and produce some kind of mathematical knowledge. We will noee s
examples of that knowledge.

. THE TEACHING SITUATION

Pedro Alson teaches mathematics at the Centraldsity of Venezuela, in Caracas. At their
entry at the University, his students had very paalities in algebra, so he tried to find another
way to make them perceive the concept of functaard more than perceiveiork on functions
without formulae. When | borrowed his device, | hadorganize it according to the French
curriculum of a scientific course for 17-18-yead-ddtudents, and to plan right phases of the
situation.

In this situation, students have graphs at thapasal, and they must build graphs of functions,
with some constraints expressed in the instructiltkes a fixed value or an inequality required to
be verified on an interval. | shall express gramsfunctions by CGR (Cartesian Graph
Representation). Students must also justify thaiGR — either given CGR or CGR they draw -
is consistent as the representative of a functaod, that the properties of the graph are coherent
with those of the function.

To do these tasks, students can ugath A direct path starts at a point S (x, 0), follothe
directions of the axis (first the y one, then thene) and goes through the corner C (x, f(x)) & th
end point: E (0, f(x)). An inverse path starts frtime y-axis. The paths can be used: 1) to justify
that a curve represents a function, 2) to build reswes from others (for example sum or
product or composite of two functions, or inver$a dunction). When paths are not sufficient to
prove a property, an algebraic work is require@ g@eamples below).

Formal notations are introduced to operate withgatnd they become a help and a necessity, so
that the formal work is an important part of theation but is not introduced in an arbitrary way.
In that way we obtain &rmal / graphic milieuthat is convenient to the mathematical work
required. In the whole situation, students needstdo prove that a graph is actually the
representative of a function: paths will be neetieddo it. The rule is as follows: a graph
represents a function if thereasly one direct path from each point of the x - axis (assuming
that x belongs to the domain of f) to the y- awigh a corner on the graph of f.

There exist three basic paths:



Schema 1
Direct Inverse Bisector
y y y
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Paths are given by the teacher in the first phéa$igecsituation, as tools to make sure that a graph
Is a representative of a function, and to findraage or an antecedent through the function.

llI.1 First phase

The aim of this phase is to let students produagltg of functions, and interpret them in relation
to well known properties of functions (like beingcreasing, or having fixed values on fixed
points). This first phase leads to the first fanafysituations: situations of graphs production.

Example:
« Draw the graph of a function f satisfying theagivconditions »
Schema 2
v yA yA
1
S > 5 o é ;) = aol ¢ b x
f(-1)=1;f(0)>0 f(a) < f(c) < f(b) f(c) < f(b) < f(a)
f(1)<0

The experiment shows that students are not uséchtwing graphs of « arbitrary » functions, and
that they need some time to get used to doingig.dlso necessary that students should get used
to paths, and convince themselves that paths @y teals to conjecture and prove about
functions. Observations prove that this phase i quseful, since as students find it difficult to
become familiar with all sorts of functional graphad to dare draw a graph, and be sure it is the
one of the required function.

In this phase, paths are not a better tool thafintezontal test line", and cannot be creditechwit
creating very interesting knowledge about functiohkat is why we need to organize other
phases to lead to real mathematical knowledge.fif$tephase can be considered as settling the
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first level of milieu, what we call the “objectivailieu” in the theory of situations, because it
supplies students with pertinent “objects” to de taquired work, such as various graphs, paths,
and rules to use the objects. The objective milsea basic one since it is essential to provide
students with procedural knowledge about functidhst is, means to do the further work.
Students anyway also know previous objects, likedr functions and use of tables: the device
will take this previous knowledge into account. \Also notice that during this phadets of
graphs and reasoning on graphs are useful to estabis basic milieu.

lll. 2 Second phase

This first group of graphs (schema 3) leads stidémtdraw particular graphs with particular
values a, b, c; the next one must compel themttodoncequantifiers, and to see the difference
between a punctual condition, such as f(a) > @&fgiven value a, and a quantified condition such
as below, which introduces the necessity of interva

Schema 3

YA YA YA

[
/ %)

Tell if f(a) < f(b) or f(a)>f(b) Draw the graph éfsuch as | Draw the graph of f, such ag
fa)<0;f(b)<0;f(c)>0 f(a)>0;f(b)<0;f(c)>0

ot

/
<Y
QD
O
o+
ot
<Y
QD
O
ot
ot
<Y
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Schema 4:
YA YA YA
1 1 > 1 1 > 1 1 >
ao b X ao b X ao b X
[Ox /x <a orx>b, f(x) <f(b) [Ox/a<x<b, Ox / x > b, f(a) > f(x) > f(b)
and Ox/a<x<b, f(a) > f(x) > f(b) S
f(a) > f(x) > f(b) Ox / x < b, f(x) > f(b)

In the first case of schema 4, a function satigfyime required conditionsannot be continuous

in a. As students are at the beginning of their coafsmlculus, they do not know that a function
may be discontinuous, therefore the question whethieinction can do a « jump » like this is
very likely to be discussed; the paths allow towsrsthe question, because a discontinuous
function does verify the good condition with a dirpath applied at the right and the left of a. So
we see that the work on given conditions can leachknown functions for students. Therefore
the given conditions amidactical variable$ of the situations. By acting on these conditiores w
can introduce the students with new functions.

lll. 3 Studying properties of functions

The following phase consists of studying propertgfunctions which are linked with the order
on R, such as to be bounded, or increasing or deiog@ This leads students to make the
difference between a condition like: « f is bountgd(a) and f(b) », which is expressed with one
universal quantifier:

Ox O[a, d, f(a) < f(x) < f(b) , and a condition like: 45 increasing ofia,  » , which requires
two universal quantifierstix O [a, 4 , Oy O [a, J , if x <y, then f(x) < f(y) . There is a
discussion between students, some of them beirgtkat the first condition means the same as
the second one, that is, that a bounded functitke @he one in the first space below) is
necessarily increasing. A counter-example has forbéuced by some students, as a curve which
satisfies the condition but is not increasing. dt'&work about theneaning of quantifiers.

Schema5
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<
O
<

fis bounded ona, b] by f(a) | OnR, fis bounded above but On]-2, 1 fis not bounded
and f(b) and f(a) < f(b) not below above

The condition of the last case in schema 5 is dgliffecult, since students at this level do not
know curves with asymptotes — and even less motolmgic functions. They are trying to
express the condition with quantifiers. First, thgy(OMO R, O x 0]-2, 1 , f(x)> M) but they
soon discover that such a function would be hartni@gine: they cannot draw any graph with
this condition. So they find that a better conditie (MO R, Ox ]-2, 1 , f(x)> M ) and try to
find a convenient function, but it is not easy igraphic milieu, because it is not possible toduil
a no bounded function that can be seen in a comgneay (the window is limited); the teacher
has to give them a function with a formufé) = 1/X , so that they can verify with algebraic
calculation that it is not bounded; moreover venidythis is not easy for them. It shows that in
some cases, the graphic work must be articulateti wie algebraic one to enhance the
understanding.

When trying to prove that the functiéfx) = 1/¢ is not bounded in the intervid,1] students use
different methods: some of them try to show thaiai exceed 60, because for them “60 is a big
number”; others show that it exceeds®1Because it is nearly the biggest number of their
calculator; and a few ones say: “Let us do it feerg M, such as to be certain”. When they write
the solution,(x , x < 1¥M, then f(x) > M, they have a problem becaus#®1], which is not
sure for every x if M <1 and x <M; and instead of choosing somé&l0,1] n [0, INM] — the
intersection is not empty — they say: if M<1 theperty is trivial, so let us do it for M>1 only,
and we are sure that this way¥ <1 and we stay in the intervid,]].

We can identify this reasoning as typical of analyd is a reasoning by a sufficient condition,
even if it is not the expected sufficient conditidimd onex in the intersection is sufficient and
always possible). So in this case the graph hepsonhjecture that it could exist no bounded
functions in a bounded interval, but the convingimgof takes place in the algebraic and analytic
settings.

Of course there are three very different levelfpabof” in this work:

- the first one, the proof that there existsxaso thatf(x) > 60, has the status of a calculation, no
more;

- in the second one, ¥0appears as a “generic number” to convinceftean exceed a “very big”
number, so it is not bounded;

- the third one is a real analytic proof.

So we can see that this phase is the key poinh@fdevice, because it leads to the aimed
knowledge — analytic thinking — and makes studestdk on the properties of functions: what are
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the functions that verify a property, what is theaming of a property such as to be bounded, or
not bounded. It also leads them to use the formahgetsuch as quantifiers, and to discuss their
number and place; then it leads students to compl®tlytic reasoning by sufficient condition.

The milieu of the third phase is thus a part of lgmrning situation, the one that permits to
validate and argument.

[11.4 Drawing graphs for sums and products of functions

This fourth phase must lead students:

- to enhance their comprehension of how to obtaim functions and study them;

- to consolidate their knowledge about numbersgarticularly the effects of the product of two
numbers. It seems trivial, but when you give thoWing tasks to 17-year-old students, you get
surprises: at first, students are not able to bae the product of a negative valuefodnd a
positive value ofy gives a negative value, or that at a point wige= 1, thenf(x)x g(x) = g(x);

- to strengthen the use of paths, and to make stsidgble to anticipate the result of a
programmed operation;

- to express general rules (on the nature of timeecaf the inverse function when it exists, for
example, and the conditions of its existence) anase their knowledge about affine or quadratic
functions, by solving problems on the product @ shm;

- to use the formal setting much more than theyeldone in the first phases, and experiment its
efficiency for anticipating and proving;

- to link graphic, algebraic and formal settings.

Examples of instructions: schema 6 (The instructions are given for the product, the same work
can be done with the sum.)

1) Draw the graph of the product function of f andising the values a, b, c, d, e.

y
f
— \\ /
\
aibicy O dXiei x
M~
\9

2) What rules can you express about the graghxaj from the graphs df andg? Express rules
about:

- the intersection points of the graphd ahdg with the x-axis, and the intersection pointdof
g with the x-axis;
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- the sign of x g and the signs dfandg;

- the values of x g and the values dfandg (for example if(f(x) O < 1,0 (f x g)(x) O < Og(x),
and this can be seen on the grapf(xif= 1, then{ x g)(x) = g(x), one sees an intersection point
with the graph od).

3) What could you say about the product of a canidianction and an affine function ? of two
affine functions ?

What kind of work is expected on these questiohg?first related to students’ knowledge about
numbers: sums and products of numbers, and therepies. And it is much easier for the sum
than for the product.

a) Sum of functions

The work on the sum could be realized without tipgase pattern on the graph, with a compass;
but it is faster with the values, even if theseuealare approached ones. Students have no doubt
that the sum of two linear functions is linearisita bit more difficult to deduce the sign of the
sum, from both signs dfandg: it is necessary to think of their absolute vdilueeachx, which is

a knowledge not easy to reach at secondary schoary clever manner to do the sum is to take
the point(x, ¥2 (f(x) + g(x)))which is the middle of the ordinates, and takaddsble. Students
find that way, but it is better to let them worktlwvthe values, because the compass does the work
“alone”, and avoids thinking about numbers.

b) Product of functions

Students have to draw many graphs of productsttasgsl to this way of finding new functions.
First, they say that as for the sum, the produdtvoflinear functions is linear; but as it is eésy
draw three points of the graph, and saw thatfdlse, they become very careful: they dare not say
that the product of a constant function and a lireeee is linear, although the points seem to be
right well in line! It has to be proved with thel@alation ofc x (ax + b).In the case of two linear
functions, as it leads to quadratic ones, it issfmbs to link the characteristics of the factorsl an
those of the product in an interesting way; thiskvooncerns the “mapping between several
notation systems signifying the same abstract ghjeere the graphic setting and the algebraic
one. It must be pointed by the teacher that thebadégc setting is a mean of proof when the
graphic alone cannot do it.

With all these interactions between the numerigeladaic and graphic settings, this work on the
algebra of functions is useful to institute a névective milieu (creating new types of functions);
but we now want to make students work about diffeddnds of proofs, that is, in a new
situation: this new situation must be adequate &hematical discussion, and does not only
possess heuristic virtues; it idemrning situation (as Brousseau defines it, a learningasiin is

a situation where mathematical knowledge is vadidatnd institutionnalized).

This situation must be organized in order to “cothgaudents to use the constituted objective
milieu for proving, so this new situation is “inged” in respect to the previous one: we call it the
dual situation. In this new situation, the instructiarteange: the new goal is to find the previous
given variables. The sum or the product is giveth\wbome conditions, and student have to find
the factors in order that the product verifiesgheen conditions.
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Examples:

- How could you take two affine functions the protdof which would be a quadratic function
with the summit of the curve at a fixed point ? RVibots fixed ? Could you obtain a quadratic
function without roots?

- How could you obtain a polynomial function of deg 3? What are the ways you can obtain an
increasing function?

The first milieu plays as a help and a resouracgotthe work, because students have experienced
the product of lots of functions; but they havectistruct the right knowledge to see that the
factorscannot bedifferent from the expected one ... , and to prdwat tt is so. And this is what
we call thenecessityof mathematical statements; students experiengghtthis work. Necessity

is opposed taontingencein the traditional way of teaching, knowledgeingroduced by the
teacher as a contingent fact ("Let us take a gtégehthis...", "When | do this product | see
that..."), but lots of students are not aware of domstraints of the compatibility and the
coherence of mathematics: we have met studentshaught that (a + B)could be equal to’ar

b? if mathematicians decided it! In the same way gheduct of two linear functions could be
linear... and they discover that if you want a quadrunction as a (non trivial) product you
cannot help but take two linear ones, andamgtlinear ones if there are specificities of the lesu
and that doing a product of first degree termsettage functions that you can never obtain, such
as a quadratic function without roots... For someemts this is quite new; and for all of them it
leads to discuss why they aareof their result, that is, discuss mathematicahtru

[11.5 The graphic milieu and the incorporated knowledge

At the end of Il, we said that semiotic tools camtaathematical knowledge that reveals with an
appropriate task. We have already seen that somel&dge about numbers and the nature of
functions comes from a task as find the produdtvaf functions in a graphic milieu, or imagine
two functions the product of which is given. Inglpart, | want to present another example of this
knowledge. It is well known that if students haveegjuation such asx b = 0 to solve, they say
thata = 0orb = 0; and if it is an inequalitax b >0, they say & >0 orb > 0", which drives their
teachers to despair.

In the graphic setting it is possible to link areguality to the equation of the corresponding
straight line, and to solve inequalities: for exdnp+ 3 < 0 can be seen graphically as the values
of the x-axis where the ordinates of the pointthefline are negative. You can use inverse paths
to visualize them (one path is drawn on the grapl)inverse paths foy < O cut the line at
values such as< - 3.

Let us take two of these inequalities, the secarallweing relative to the sign &f3 x — 2 Then
with the straight lines you see that for the valuethe intervall-co, -3[ bothx + 3 and2/3 x — 2
are negative, for the values in the interjvaB, 4 x + 3 is positive an®/3 x — 2is negative, and
that for the values in the intenjd, +oo[ then bothx + 3 and2/3 x — 2are positive.
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Schema 7
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It allows to solve th@roductinequality:(x + 3)(2/3 x — 2) > Qbut it shows something more, and
the fact that you can see this property is dubéagytaphic semiosis you are using. For that type of
inequality @x b >0), you could think that you encounter four posdiles: a >0and b >0,a<0
andb<0,a>0andb<0,a<0andb>0.

But in a graphic milieu you realize that one caseen happens with lines, there are only three
cases and not four, because you canno®gek — 2 > Owhenx + 3 < 0. Of course this can be
rediscovered doing a table of signs for the proguet 3)(2/3 x — 2)but the aim of this work is
precisely to do understand why the table of signlyg shows three possibilities. In the algebraic
setting indeed you can notice the same fact butoamnot explain it, whereas in the graphic
setting you see that, given the two lines, it carbeotherwise when one line exceeds the other
one, it cannot go back underneath.

This example shows how we can say that each setfisgmiotic tools carries some specific
mathematical knowledge; and this allows us to kay bne representative or one setting does a
part of the work itself. The question is then: htwexplain what you have found, and the
explanation is a part of the mathematical debate.

lll. 6 Inverse and composite of functions

To deepen the formal control that students can lggiworking within this device, it is interesting
to go on with a work on inverse and composite oftcfions; the other aim is to make them work
on functions as objects, as it is clear that bbthdquestions and the notations concern a global
view of functions. First the students have to bt target function with a heuristic method, by
drawing points, and this work must be done witthpaéspecially the bisector path; but very soon
the questions focus on the existence of the inyesets properties, which both involve the
function as an object.
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1) For the inverse:
- using the paths, build the inverse of the functipthat is, the function that sendsto the
antecedent of by f. It is easy if you give a name to all the "corfierthe path: you take x and
send it by a vertical path to the po(rt x) by the first bisector, then draw a horizontal pattthe
curve and obtaiif (x), x) because the ordinatexsand it is a point of the curve; a vertical path
to the bisector givegf (), f (x)) and a last horizontal path gives f *(x)) which is a point of
the graph of the reciprocal function, when thisclion exists. But it is not so interesting to
construct the curve point by point, as to try tafthe properties of functions having an inverse,
and investigate and decide how to find the wholdRCG
The questions are:
- What type of functions is likely to get an invera How could you quickly draw the graph of the
inverse, knowing the one of the function ? Expiessle and prove it. The graphic milieu makes
the answer easy because with the paths you imneédisge that the second path, the horizontal
one, has only one intersection with the curvenid anly if, the function is strictly monotonic.
And otherwise you get two antecedents, which méaadifferent possible inverses; so students
are led to divide the domain of f into intervalses it is monotonic.
- build the graph of the inverse of the square fiong on any interval wherever possible; what do
you find? Can you express the two functions yowetfaund with a well known function?

2) For the composites of functions:

Schema 8

/:\ Ve

- using the paths, build the composite of the twctionsf andg : fog . Point by point it is the
same method as for the inverse, take x, by a abpath obtair{x, f(x)),then by the bisectdf(x),
f(x)), then(f(x), g(f(x))),and a last horizontal path {®, g(f(x))) which is the point you want to
reach. When you go horizontally with a path youngeax, and when you go vertically you
change y. A point on the bisector can be recogrnieeaduse it has abscissa equal to ordinate.

- isfogthe same agof?

Students become able to express rules about tistdos that get an inverse, and the property of
the CGR off ™ being symmetric to the graph foivith relation to the first bisector; they can draw
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composites very quickly, and anticipate their prps. The interest of this last phase is mainly
to lead students to use formal notations much rtiwae they usually do, and to experiment the
efficiency of this setting to anticipate propert@sfunctions and to prove these properties. And
moreover, in this phase the work emphasizes ontibmg as objects — global point of view —
when students try to find the inverse of a functiand theorems about functions that get an
inverse.

IV. CONCLUSION

The aim of this paper was to prove how it is pdssib construct an interesting situation with a
theoretical control; anyway it is important of ceeiithat the situation encounters some success.
A whole class of 17-year-old science students ¥edid the device in 1998 (35 students). At the
end of the year, | gave a questionnaire to fowssga of such students, including the experimental
one (140 answers). Three questions of the test weted from Schwarz and Dreyfus paper
(Schwarz and Dreyfus 1995), and wanted to tesskilbabout the ambiguity of representatives
in the functions field: given some aligned pointsaograph, could it be the graph of a single
affine function for example, or of any arbitrarynfition whose CGR contains the given points?
Or, given a CGR with asymptotes, and four differemiulae, what could the equation of the
function be? And another question was to build @& fignction (actually, a graph) with three
"pieces" of graphs, if it was possible to put thtagether to do a new graph, and express the
function with one formula or more.

Three other questions tested the common contractt &bnctions, and the given tasks were quite
traditional at that level, such as read the robss foinction on its CGR, or describe the variations
of a given function.

Three questions were borrowed from a questionmaien by Funrighetti & Somaglia (1994), to
test links between the algebraic and graphical tpanfi view, and these questions were rather
classical too, such as see the growth on a grapll fot detail them).

At last, three questions were built to test thelsiis' knowledge on limits and derivative from a
graphical point of view, since the test was givéieraa whole course of analysis. These are not
very classical: they must recognize the graph efdérivative of a given function (the graph of
the function being given); they must compare thévdéves of two functions, knowing that their
graphs are quite the same with consideration ddrsstation; they must determine if a graphically
given sequence could have a given limit.

Then there were six classical questions and sixahessical ones (where ambiguity, functions as
objects, or links between settings took place).

We read the papers of students trying to analyssr throcedures The results of the
questionnaire indicate that knowledge about antyithanctions, links between settings and CGR
have been rather well understood and taken imerekperimental class.

In a more general way, students of the experimesataiple indicate more irregular success than
the others, but they tried to solve more questitireems that they manifest a greater dispersion
of their knowing, which is also confirmed by thectfdhat in the non experimental classes we
could distinguish between the papers of students uwdually succeeded well in mathematics
from the papers of the other ones, while this waspertinent for the experimental class because
all students tried a heuristic work: they werergyto answer the questions with various means
and made some mistakes, but none of them was belafel unable to answer.
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Moreover:

1) We observed that the students of the experirheataple expressed much more mathematical
knowledge, and were able to discuss the relevanivladge with pertinent proofs: discuss if a
graph "could be" the graph of a given function,ifahe graph of a derivative "could look the
same" for two functions; and argue that a givencfiam — a formula — "must have" some
different asymptotes so it could not be the givesph. They were able to discuss with direct
proofs and constructed graphic counter examplesreas the other students could only answer if
there had been a similar case in their previougrapce (I can answer because it is exactly like
o)

2) The answers to the questionnaire show thatttheests of the experimental sample had more
various and relevant ways of investigation for peafis and more initiative; for instance they
tried to draw another graph, to calculate some esluhat is, they were able to use their
knowledge in a decontextualized way and to adaptriew mathematical objects.

However very good students of the whole samplebzacredited of the same abilities, and the
difference comes essentially from the average o8esl can say that good students gain the
wanted knowledge without a special training, areytbucceed whatever the teaching device may
be. This is a well-known result anyway, and weraresurprised to see it confirmed.

3) The manifested knowledge is related to the ohitwis required at university level, that is,
produce mathematical statements, discuss theiditygliand be able to prove them; and
moreover, students' abilities on graphs are thdse ave required at college and university for
advanced students: that is, use the graphs asuaistieeway of research (Bloch 2000, Maschietto
2001). This result shows that it is possible (aesimble, considering that it will be needed later)
to broaden the role of the graphic setting in tlgisg problem activity at secondary level.

In that way, | can say that the experimental deisc@ore appropriate than the classical ones to
further studies in mathematics, because it makegests able to produce functions, to discuss
their properties, and to express and prove theqrératso leads them to use the formal setting,
which will prove very useful for their further stied. Even good students may benefit from such
mathematical work.

This result is all the more interesting since aobFrench students fail in their university stuglie
because they do not understand the game mathemaitintdo play at that level: ask conjectures,
get various elements in different settings in otdenvestigate, and produce a formal proof.
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Let us recall that a didactical variable of aiaiton is a parameter of the situation, whose vahrebe fixed by
the teacher, and is likely to determine the workhaf student: orient or forbid a strategy, put gklton means at
student’s disposal or not, etc...

® The complete study is to be found in Bloch, 2000.
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